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Statistical Disclosure Limitation

Original Database Sanitized data set
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Factors in SDL design

1. What are the privacy
requirements?

2. What analyses need S
to be supported? s’

Individual

: privacy

3. Is SDL part of a
broader system?
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Privacy concepts
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Anne: A survey participant who responds that she is a smoker

Privacy:

Confidentiality:

the right to not answer questions about smoking

the right to not have answers used against her
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ldentity Disclosure

Data include

« ZIp code

« Gender

« Smoking status

|dentity Disclosure

« Attacker knows Anne was in the study

* Only one woman in her zip code In the data.
 Now knows Anne’s smoking status
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Attribute Disclosure

« Attacker knows Anne was In the study
* Learns all respondents in her zip code are smokers

« Now knows Anne Is a smoker
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Inferential Disclosure

 Attacker knows Anne was in the study
« 99 of 100 female respondents in her zip code smoke

« Now knows Anne is probably a smoker
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K-anonymity and |-diversity

Dataset is k-anonymous if, for any combination of
attributes, at least k records have that combination

- Reduces risk of “singling out”
- Does not prevent attribute disclosure

I-diversity ensures that within each group, there is
“sufficient” heterogeneity in sensitive attributes




SDL Methods
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De-identification
HIPAA defines 16 identifiers to remove

« J-PAL for Stata (stata PIll scan) and R (Pll-scan)
 Innovations for Poverty Action for Python or Windows
(PIl detection)

Necessary, but not sufficient

Ignorable
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https://github.com/J-PAL/stata_PII_scan
https://github.com/J-PAL/PII-Scan
https://github.com/PovertyAction/PII_detection
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Coarsening

Collapse or coarsen variables that “single out” individual records

Used in combination with k-anonymity

Examples:

- Public use microdata areas in the American Community Survey
- Topcoding income in the Current Population Survey

- Reporting age, income in bins

- Removal of detailed geographies, like state
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Distribution of annual household income in the United States 2017 Estimate

Topcod

Source: U5, Censuz Burean, Current Population Surrey, 2018 Annval Social and Economic Suppletnent.

for inference on quantiles below topcode (e.g. 90-10 rat

|

The top 10 percent reported income

greater than $175,000

Mean income was roughly

$86,000

Median household income was roughly

$60,000

Categories in $5,000 increments (except the last group)

|

The bottom 10 percent reported income

less than $15,000
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Cell Suppression

A B|cC|D AlB|*|D YRR
E|F |G| H E| F| G| H E|F |G| H| pum
IJKL-*JKL-*J*L-l
M N|O|P M| N O] * M| N | * | *

« “Blank out” cells to protect outliers
* i.e., where one large firm dominates

* Then “blank out” more cells to prevent subtraction attack

* e.g., Economic Census, County Business Patterns
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Cell Suppression

A B|cC|D AlB|*|D YRR
E|F |G| H E| F| G| H E|F |G| H| pum
IJKL-*JKL-*J*L-l

M N|O|P M| N O] * M| N | * | * -

Not ignorable unless
...Suppression was random with respect to your estimand of interest

...or you really only care about the unsuppressed data.

So then what?
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Swapping .
(oo
High-risk records: o/
« Matched to a “nearby” record
. And swappec Person 1 Person 2.
A X
Y B
Preserves counts on key “
Z C

characteristics

May prevent disclosure of
sensitive attributes
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Swapping .
|I.-"j ® o I
Ignorable if.. 4
only care about matching variables  [ISILEN Person 2 |
: A X
Non-ignorable for v -
covariance between matching “
and other variables 4 C

Parameters are secret
e Swap rate
« Sensitive chars
« Swap domain
« Etc.
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Noise Infusion 14 41 50 58 65

15 24 26 30 25
Add randomly distributed 52 53 66 47 51

noise to each unit 68 6 44 17 32
38 26 33 42 64

Add up the distorted units U

Noise averages out in larger Doy (ZIY, 640)

cells @

Ignor_ablefcl)jrlmfeans;_ 13 41 51 58 65
Non-ignorable for variances 15 24 25 30 24

91 54 66 48 91
68 6 a4 16 32
38 25 33 42 65
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Why should you read this chapter?

* Further description of methods

* Links to tools and the broader literature

« Connections between SDL and formal privacy




Thank You!

lan M. Schmutte
http://ianschmutte.org
schmutte@uga.edu
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